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Molecular phylogenies describe the study of evolution relationships between living beings, protein and genetic sequences and
other molecular taxons. In recent years there has been increased interest in producing large and accurate phylogenies trees
using some numerical computational methods approach. One class of molecular phylogenies is the distance matrices method,
with the matrix whose entries represent the distinctions between the taxons under study. To construct large and accurate trees
for a large number of taxons, the computational processing increases and parallel computing can be helpful. So far we have
tested some methods to solve the linear systems, being driven to important conclusions, like which is the best tested method,
and having also reached some questions about communication.

1 Introduction

Molecular phylogenies describe the study of evolution relationships between living beings, protein and genetic sequences and
other molecular taxons. Inferring phylogenies from molecular data may be carried out through the point analysis of similarities
and differences in the studied sequences. One class of molecular phylogenies is the distance matrices method, with a matrix
whose entries represent the distinctions between the taxons under study. According to Felsenstein [1], the distance matrices
methods may be shortly described as: compute a distance estimate for each pair of species and then search a tree that better
approaches this distance set. This procedure discards all data originated from any combination bearing a high amount of
characters and thus reduce the data matrix to a matrix associated to pairs of distances.

In recent years there has been increased interest in producing large and accurate phylogenies trees using some numerical
computational methods approaches. To construct large and accurate trees for a large number of taxons, the computational
processing increases and parallel computing can be helpful [2, 3]. We work with the distance matrix methods for inferring
phylogenies by taking a large number of taxons. These methods have been introduced by Cavalli-Sforza and Edwards [4] and
by Fitch and Margoliash [5]. The methods introduced by Cavalli-Sforza use a set of linear equations where the number of
equations and their variables grow up with the number of taxons, linearly. Here, we use parallel computing to perform the
time processing to solve the numerical block linear systems associated to the length of the branches of the phylogenetic trees.

2 Motivation

The least squares method is not suitable to get from the distance matrices the sides length for each branch of the considered
trees. For a given tree topology, the solution of the corresponding system of linear algebraic equations, see [4], becomes
intractable with direct methods if we are interested in a high number of taxons.

The matrix associated to the least-squares method, being symmetric and positive-definite, allows the use of the conjugated
gradient method (CGM). We know that in the worst case convergence is guaranteed in n steps, being n the linear system
order. Since each iteration for the CGM requires n2 +O(n) multiplications and divisions, we deduce that in this case we need
n3 +O(n2) operations, which is the same amount needed for a complete inversion of the matrix with the LLt decomposition.

In order to improve convergence for CGM, we get hold of the matrix profile. It turns out that all matrices that appear are
diagonal block-matrices, being all blocks also symmetric and positive-definite. We can then use the Preconditioned Conjugate
Gradient method with block Jacobi as a preconditioner – this amounts to incomplete block decomposition. It is known
that Jacobi method has a rather slow convergence but, when employed as a preconditioner, overall convergence is speeded up.
Besides, parallelization of block-Jacobi preconditioned conjugate gradient method (BPCGM) may be obtained very efficiently.

3 The method

Given T , a tree without root and having a set of taxons L, our aim is to find a set of distances between these taxons in such a
way that these distances turn out to be the best approximations – in the least-squares sense – to the observed distances.

The measure given by the least-squares method has the expression: Q =
∑n

i=1

∑n
j=1,j �=i wij(Dij−dij)2. In this equation,

dij denotes the sum of the length of the branches connecting taxons i to j, Dij means the distances given by the distance matrix
while wij stands for the weights, here taken equal to unity. Also Q means the sum of the squares of the differences between
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Dij , the distances given by the tree entries, and dij , the inferred distances. The least-squares method aims to minimize the
value for Q. This minimum is reached first taking the derivatives of Q with respect to the branches length, then making the
resulting equation all equal to zero.

The first step consists in generating the matrix X to represent the position the taxons occupy in the tree in a matrix
representation. Here each column represents a side in the tree, while each row represents a pair of taxons. If the path between
two taxons i and j passes through branch k, we must put label 1 on line ij and column k, otherwise we label this position with
0. This coefficient is denoted by xij,k. The coefficients di,j denote the sums of the branches length. And this equation may be
written in matrix form (XtX)v = Xt.d, where X is the matrix which represents the position of all taxons on the tree and d
is the distance vector between the taxons.

Hence, the linear system is written in the form Av = b where A is a symmetric positive definite nxn matrix, b = Xtd is
a vector associated to the independent term with dimension n and v is the unknown vector with dimension n. To solve this
linear system we could invert the matrix A and then use A−1 = (LLt)−1 = (Lt)−1L−1, where L is Cholesky decomposition
lower triangular matrix (nxn). This process becomes costly when n gets large, reaching a unsuitable threshold.

Being the matrix A positive definite, we can apply the conjugate gradient method in its parallel version. Besides, the
matrix A exhibits a block profile that assures that the block-Jacobi iterative method converges when applied to solve the
linear system. As claimed before, our aim is to use iterative block-Jacobi as a preconditioner for the preconditioned conjugate
gradient method (BPCGM).

Given the nxn matrix A, shown in our linear system Av = b, it must be partitioned in block matrices, with diagonal blocks
Bk, where diagonal (Bk) = dk, dk = aii, for some i = 1, 2, 3, ...n. This way we get m (nkxnk) blocks Bk,

∑m−1
k=0 nk = n.

First, each block Bk, k = 0, 1, ..., m − 1, which turns out to be symmetric and positive definite, is inverted with Cholesky
decomposition. The matrix A is preconditioned by matrix C (nxn) given by block matrices Bk, k = 0, 1, .., m − 1. In this
case, we work the linear system C−1Av∗ = C−1b for the conjugate gradient method. The processing for BPCGM is then
shared between the m blocks Bk, k = 0, 1, ..., m−1 distributed among the p processors with rank(pj) = j, j = 0, 1, ..., p−1,
where p denotes the number of processes. We take rk = (mk mod p) and the process of rank(pj) ≡ rk carries out the
processing which corresponds to the mk block sub-vector. We have a process which assigns the tasks globally (master), and
the slave processes that execute the parts of BPCGM, always restricted to the values assigned to their task share.

The additional cost for the BPCGM is the construction of the sub-vector sequences gk = B−1
k rk, where rk = Akvk − bk,

Ak (nkxnk) are the blocks in the matrix A and as vk and bk the corresponding sub-vectors, for k = 0, 1, .., m − 1.

4 First Results

We first used the sequential versions of block-Jacobi method (JBM), conjugate gradient and preconditioned conjugate gradient
with block-Jacobi as preconditioner. It turns out that convergence is much better for the latter, although its speed-up with
respect to the second one is rather small. It seems encouraging to use a parallel version of BPCGM. Nevertheless we must
take into account its rather high data transmission rate as well as the additional cost to invert the block matrices Bk required
for the algorithm start-up. Anyway, we can claim that as long as inversion of the matrix A is intractable, the parallel version
of BPCGM is available for the rescue.
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